

The d^5 trans-[Ru^{III}(H₂O)₄Cl₂]⁺ problem (revised 2/11/03)

The solution to the d^5 *trans*-[Ru^{III}(H₂O)₄Cl₂] problem – assumes trigonal water molecules and D_{2h} symmetry. See inset Figure 1. Assume Cl-Ru-Cl is z axis. Choice of x and y is arbitrary. Using the character Table, the d orbitals transform as x2-y2, z2 as ag; xy, xz and yz as b_{1g}, b_{2g} and b_{3g} respectively. Because of repulsion by water and halide lone pairs, and using

coordinate axis shown in Figure 1, the angular overlap model would predict the energy order xz > yz > xy - this is purely based, qualitatively, on the availability of oxygen and chloride lone pairs to repel any electrons in these orbitals. Note the orientations of the trigonal $p\pi$ orbital on each oxygen.

For symmetries of sigma bonds (and Ru-L stretching vibrations), carry out operations of group on the Ru-O,Cl bonds- as there is no operation that mixes Ru-Cl with Ru-O you can do this in two steps.

	Е	C2z	C2y	C2x	i	ху	XZ	yz
σ-Ru-Cl	2	2	0	0	0	0	2	2
σ-Ru-O	4	0	2	2	0	4	2	2
π-Ru-Cl	4	-4	0	0	0	0	0	0
π -Ru-O along x	2	0	0	-2	0	-2	2	0
π -Ru-O along y	2	0	-2	0	0	2	0	-2

Using the formula to reduce the reducible reps to a sum of irreducible reps- one obtains:

 σ -Ru-Cl $a_g + b_{1u}$

 $\sigma-Ru-O \quad 2a_g + b_{2u} + b_{3u}$

 π -Ru-Cl $b_{2g} + b_{3g} + b_{2u} + b_{3u}$ {this would be $e_g + e_u$ in the higher D_{4h} group}

 π -Ru-O along x - $b_{2g} + b_{1u}$ {note these map nicely, as they should on the xz and p_z , orbitals}

 π -Ru-O along y - $b_{1g} + b_{3u}$ {note mapping on xy and p_x orbitals here and then think that you might have just looked for the mapping to reduce the rep. instead of doing it formally}

Hence create the qualitative MO diagram as shown in Figure 2

Consider transitions from the filled orbitals to the $d(b_{2g})$ orbital. Since this is a π -orbital transitions from the σ -levels will be overlap forbidden. In D_{2h} symmetry, x,y,z transform as b_{3u} , b_{2u} and b_{1u} respectively. Multiply b_{2g} by each of these, you obtain b_{1u} , a_u and b_{3u} respectively. Therefore ONLY transitions from these levels will yield symmetry

allowed transitions; Recall we want the triple product, i.e. $\langle b_{1u} | r | b_{2g} \rangle$ (where r is one of the aforementioned x,y,z vectors), to contain (result in) a_g .

Thus transitions possible:

From π -chloride $b_{3u} \rightarrow b_{2g}$ polarization along $z (b_{3u})$ From π -oxygen along $y \ b_{3u} \rightarrow b_{2g}$ polarization along $z (b_{1u})$ **BUT this is an in-plane p** π **MO orbital, so transition to out of plane xz is overlap forbidden**

From π -oxygen along x $b_{1u} \rightarrow b_{2g}$ polarization along x (b_{3u})

So, we expect two strong LMCT bands from π -chloride and from π -oxygen (along x, with $p\pi$ out of the molecular plane). With the former likely to lower energy, {formally negative charged Cl valence orbitals likely to lie higher than neutral oxygen} In addition there could be higher energy bands from the σ -b_{1u} and σ -b_{2u} and σ -b_{3u} orbitals to the σ^* antibonding x^2 - y^2 and z^2 orbitals. However, note that a transition from the inplane σ -orbitals to z^2 and a transition from the axial σ -b_{1u} (Cl) to x^2 - y^2 will both be overlap forbidden. So we should see two (or really three) strong much higher energy transitions { σ -orbitals lie deeper and there is a 10Dq jump !} Namely σ -chloride b_{1u} to a_g (z^2) polarized along z σ -oxygen b_{2u} and b_{3u} to a_g (x^2 - y^2) polarized along y and x respectively- they will probably merge into one band

Think about the consequences if the hole in the d shell is in b_{1g} or in b_{3g} instead of b_{2g} . The polarization will surely change- will the number of bands change ??

Feb 11/03 QED